IB Mathematics HL 13 Euler's Method Assignment

February 29, 2016
Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x+\sqrt{x y}}$, for $y, x>0$.

1. Use Euler's method starting at the point $(x, y)=(1,2)$, with interval $h=0.2$, to find an approximate value of y when $x=1.6$.
2. Use the substitution $y=v x$ to show that

$$
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v}{1+\sqrt{v}}-v .
$$

3. (a) Hence find the solution of the differential equation in the form $f(x, y)=0$, given that $y=2$ when $x=1$.
(b) Find the value of y when $x=1.6$.
