IB Mathematics HL 12 Vectors, Lines, and Planes Assignment

1. The points $P(-1,2,-3), Q(-2,1,0), R(0,5,1)$ and S form a parallelogram, where S is diagonally opposite Q .
(a) Find the coordinates of S.
(b) The vector product $\overrightarrow{\mathrm{PQ}} \times \overrightarrow{\mathrm{PS}}=\left(\begin{array}{c}-13 \\ 7 \\ m\end{array}\right)$.
[2 marks]
Find the value of m.
(c) Hence calculate the area of parallelogram PQRS.
(d) Find the Cartesian equation of the plane, Π_{1}, containing the parallelogram PQRS.
(e) Write down the vector equation of the line through the origin $(0,0,0)$ that is perpendicular to the plane Π_{1}.
(f) Hence find the point on the plane that is closest to the origin.
(g) A second plane, Π_{2}, has equation $x-2 y+z=3$.
[4 marks] Calculate the angle between the two planes.
2. (a) Consider the vectors $\mathbf{a}=6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}, \mathbf{b}=-3 \mathbf{j}+4 \mathbf{k}$.
i. Find the cosine of the angle between vectors \mathbf{a} and \mathbf{b}.
ii. Find $\mathbf{a} \times \mathbf{b}$.
iii. Hence find the Cartesian equation of the plane Π containing the vectors \mathbf{a} and \mathbf{b} and passing through the point $(1,1,-1)$.
iv. The plane Π intersects the $x-y$ plane in the line l. Find the area of the finite triangular region enclosed by l, the x-axis and the y-axis.
(b) Given two vectors \mathbf{p} and \mathbf{q},
i. show that $\mathbf{p} \cdot \mathbf{p}=|\mathbf{p}|^{2}$;
ii. hence, or otherwise, show that $|\mathbf{p}+\mathbf{q}|^{2}=|\mathbf{p}|^{2}+2 \mathbf{p} \cdot \mathbf{q}+|\mathbf{q}|^{2}$;
iii. deduce that $|\mathbf{p}+\mathbf{q}| \leq|\mathbf{p}|+|\mathbf{q}|$.
