

IB Mathematics HL 12 Vectors, Lines, and Planes Assignment

1. The points P(-1, 2, -3), Q(-2, 1, 0), R(0, 5, 1) and S form a parallelogram, where S is diagonally opposite Q.

(a) Find the coordinates of S.	[2 marks]
(b) The vector product $\overrightarrow{PQ} \times \overrightarrow{PS} = \begin{pmatrix} -13 \\ 7 \\ m \end{pmatrix}$.	[2 marks]
Find the value of <i>m</i> .	
(c) Hence calculate the area of parallelogram PQRS.	[2 marks]
(d) Find the Cartesian equation of the plane, Π_1 , containing the parallelogram PQRS.	[3 marks]
(e) Write down the vector equation of the line through the origin $(0, 0, 0)$ that is perpendicular to the plane Π_1 .	[1 marks]
(f) Hence find the point on the plane that is closest to the origin.	[3 marks]
(g) A second plane, Π_2 , has equation $x - 2y + z = 3$. Calculate the angle between the two planes.	[4 marks]
(a) Consider the vectors $\mathbf{a} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = -3\mathbf{j} + 4\mathbf{k}$.	[11 marks]
i. Find the cosine of the angle between vectors a and b . ii. Find $\mathbf{a} \times \mathbf{b}$.	
iii. Hence find the Cartesian equation of the plane Π containing the vectors a and b and passing through the point $(1, 1, -1)$.	
iv. The plane Π intersects the <i>x</i> - <i>y</i> plane in the line <i>l</i> . Find t finite triangular region enclosed by <i>l</i> , the <i>x</i> -axis and the <i>y</i>	
(b) Given two vectors \mathbf{p} and \mathbf{q} ,	[8 marks]
i. show that $\mathbf{p} \cdot \mathbf{p} = \mathbf{p} ^2$;	
ii. hence, or otherwise, show that $ \mathbf{p} + \mathbf{q} ^2 = \mathbf{p} ^2 + 2\mathbf{p} \cdot \mathbf{q} + \mathbf{q} ^2$;	

iii. deduce that $|\mathbf{p} + \mathbf{q}| \le |\mathbf{p}| + |\mathbf{q}|$.

2.