IB Mathematics HL 12
 Derivatives and Curve Sketching Assignment

1. Use the definition of the derivative to show that, if $f(x)=-x^{2}+3 x+4$, then $f^{\prime}(x)=-2 x+3$.
2. Find the equation of the tangent line to the curve $y=f(x)$ at the point on the curve with x-coordinate 1 , given that

$$
f(x)=2 x^{3}-\frac{4}{x}
$$

3. Given the graph of f^{\prime} below, sketch a possible graph of f, clearly indicating the x-coordinates of any points of interest.

4. (\star) Let f be a twice-differentiable function with domain \mathbb{R}, and assume that f has stationary points at $\mathrm{A}\left(a_{1}, a_{2}\right), \mathrm{B}\left(b_{1}, b_{2}\right), \mathrm{C}\left(c_{1}, c_{2}\right)$ and $\mathrm{D}\left(d_{1}, d_{2}\right)$, with the graph of f^{\prime} as shown below.

(a) Explain how you know from the graph of f^{\prime} that $\mathrm{A}\left(a_{1}, a_{2}\right)$ will be a maximum of f. Is $f^{\prime \prime}\left(a_{1}\right)$ positive or negative?
(b) Explain how you know from the graph of f^{\prime} that $\mathrm{B}\left(b_{1}, b_{2}\right)$ will be a minimum of f. Is $f^{\prime \prime}\left(b_{1}\right)$ positive or negative?
(c) Explain how you know from the graph of f^{\prime} that f has at least three points of inflexion, one of which is $\mathrm{C}\left(c_{1}, c_{2}\right)$. State the value of $f^{\prime \prime}\left(c_{1}\right)$.
(d) The Second Derivative Test provides a way of classifying the stationary points of a twice-differentiable function f based on the value of the second derivative. Complete the statement of the second derivative test below.

Given a twice-differentiable function f with stationary point a,

- if $f^{\prime \prime}(a)<0$ then f will have a \qquad at $x=a$.
- if $f^{\prime \prime}(a)>0$ then f will have a \qquad at $x=a$.
- if $f^{\prime \prime}(a)=0$ then f will have a \qquad at $x=a$.
(e) Given that $f^{\prime \prime}\left(d_{1}\right)>0$, is $\mathrm{D}\left(d_{1}, d_{2}\right)$ a maximum, minimum, or point of inflexion of f ?

5. (\star) Consider the curve given by $y=f(x)$ where

$$
f(x)=x^{4}-4 x^{3}-2 x^{2}+12 x
$$

(a) Find the derivative of f.
(b) Find an expression for $f^{\prime \prime}$, then use the Second Derivative Test to classify the stationary points of f.
(c) Find the coordinates of the (non-stationary) points of inflexion of f.

