
IB Mathematics HL 12
A Review of the Derivative

1 The Derivative at a Point

Consider a function f , and a point a in the domain of f .1 If we were to graph y = f (x),
we would find that the point (a,f (a)) lies on the graph. Similarly, for any b in the
domain of f , we could produce another point on the graph, (b,f (b)). We would then
be able to construct the line passing through (a,f (a)) and (b,f (b)), after which we
could examine the gradient of that line (a line passing through (at least) two points on
the graph of a function is called a secant line).

This is essentially the idea that leads us to the definition of the derivative at a
point a: we consider how the gradient of the secant line would change as the value of
b approaches the value of a. The gradient of the secant line would be given by

∆y

∆x
=
f (b)− f (a)

b − a

and b approaching a is of course one way of talking about a limit, leading us to consider

lim
b→a

f (b)− f (a)
b − a

(1)

Equation (1) is one definition of the derivative of f at a point a.
In our lessons, we’ve used an alternative, equivalent definition. Instead of using b

to represent a value in the domain of f , we’ve used a+h instead. Our second point on
the graph of the function then has coordinates (a + h,f (a + h)), and so the secant line
would have gradient

∆y

∆x
=
f (a+ h)− f (a)

(a+ h)− a
, or more simply,

∆y

∆x
=
f (a+ h)− f (a)

h

The fraction appearing on the right above is sometimes referred to as the Newton quo-
tient. Now, instead of letting b approach a, we can let h approach 0 to get the same
effect. So, we’re left to consider

lim
h→0

f (a+ h)− f (a)
h

(2)

Equation (2) is the definition of the derivative of f at a point a that we used in class.

1You may find that it is helpful to consider a particular function and a particular value for a, and I’d
recommend thinking of f (x) = x2 and a = 1 if you get stuck in any part of the discussion that follows.
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If we make use of the Lagrange notation for the derivative of f , then the definition
of the derivative of f at a point a is given by

f ′(a) = lim
h→0

f (a+ h)− f (a)
h

(3)

Note that, for a particular function f and a particular value a, the derivative of f
at a will be a numerical value. In class we saw that, for f (x) = x2 and a = 1, we get
f ′(1) = 2, and similarly we found that f ′(2) = 4 and f ′(3) = 6.

1.1 Questions

1. Use the definition of the derivative to find the derivative of f (x) = −x2 + 4x at
x = 5.

2. Consider the function f (x) = 2x.

(a) Use the definition of the derivative to show that the derivative of this func-
tion at x = 3 is 2.

(b) Prove that f ′(a) = 2 for any a ∈R.

2 The Derivative

After calculating the derivative of a simple function like f (x) = x2 for various values of
a, you may start to observe a pattern that would allow you to predict the value of the
derivative without calculating the relevant limit. If you were interested in finding the
value of f ′(a) for several different values of a, you might instead hope to find a function
that would, given the value of a, allow you to calculate the value of f ′(a) without your
needing to evaluate a limit. This leads to the notion of the derivative, which is exactly
the function that gives you those values directly.

Definition (The Derivative). Given a differentiable function f , the derivative of f ,
represented by f ′, is given by

f ′(x) = lim
h→0

f (x+ h)− f (x)
h

A function that has a derivative at all points in its domain is called differentiable.
While we won’t pause to consider such functions now, some functions are not differ-
entiable: they may fail to be differentiable at certain points in their domain, or they
may be nowhere differentiable.

2.1 Derivatives of Polynomials

When we need to determine the derivative of a given function, we would usually like
to avoid having to determine the derivative by using the definition (and so, explicitly
considering a limit). Instead, we’d like to develop techniques for determining the
derivative by easier methods, when possible. To this end, some of you will already be
familiar with the following result.

2 of 20



Theorem (The Derivative of f (x) = axn). Given a function of the form f (x) = axn for some
constant a ∈R, and n ∈Z+, we have

f ′(x) = anxn−1

Of course, this result alone doesn’t allow us to find the derivative of any polyno-
mial, but only those like f (x) = 3x2, with derivative f ′(x) = 6x, and f (x) = 2

5x
5, with

derivative f ′(x) = 2x4. Fortunately, we can easily extend this using the following result
(which is rather simple to prove using the definition of the derivative and the relevant
properties of limits).

Theorem (The Additive Property of Derivatives). Given differentiable functions f and
g, the function h defined by h(x) = f (x) + g(x) is such that

h′(x) = f ′(x) + g ′(x)

In other words, the derivative of a sum is the sum of the derivatives.

Now, using this result, we can find the derivative of any polynomial.2 For example,
if f (x) = 5x4 − 2x3 + 7x − 3, then f ′(x) = 20x3 − 6x2 + 7.

In fact, we have another powerful result at our disposal, as the earlier result con-
cerning the derivative of functions of the form f (x) = axn was unnecessarily restricted:
we can, in fact, allow n to be any nonzero real number. Consider, for example the func-
tion f (x) =

√
x. We can reason as follows.

f (x) =
√
x

= x
1
2 , and then, taking n =

1
2

in our earlier theorem, we get

f ′(x) =
1
2
x−

1
2 , which could be rewritten as

=
1

2
√
x

Note that (both for the derivative and the original function), the domain must be re-
stricted to non-negative real numbers.

The result above involved a positive rational exponent, but negative exponents
are also permitted. Thus, for example, if f (x) = 1

3x , then f ′(x) = − 1
3x2 . Many of the

important results we’ll cover later in the course concern how we can find derivatives
for increasingly complicated functions without having to return to the limit definition
of the derivative.

2.2 Questions

1. Find the derivative of f (x) = −2x3

(a) using the technique just introduced for finding derivatives of polynomials.

2Strictly speaking we will also be using the result that the derivative of a constant is 0, another result
that is quite straightforward to prove.
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(b) using the definition of the derivative.

2. Use the method introduced in this section to show that, if f (x) = 1
3x , then f ′(x) =

− 1
3x2 .

3. Find the derivative of f (x) = x4 − 1
2x2 +

√
x.

3 So What Exactly is a Derivative?

We can easily find derivatives for a wide variety of functions, but what exactly is a
derivative? The short (but not very informative) reply is that the derivative of a func-
tion is another function, namely, the one given by taking the limit of the Newton
quotient (as defined at the beginning of Section 2). Of course, this probably isn’t very
helpful, and to get a better understanding of derivatives we’ll need to consider some
of the ways in which we can interpret the derivative.

Consider the gradient of a line between two points (x1, y1) and (x2, y2). You know
that the gradient of the line passing through those two points is given by

y2 − y1

x2 − x1

That is, after all, the definition of the gradient. However, you also know that the
gradient of a line gives information about its steepness, you know that the line given
by y = 5x − 2 is steeper than the line given by y = 2x + 14, that lines with positive
gradients are increasing, lines with negative gradients are decreasing, and you know
that you can use any two distinct points on the same line to calculate the gradient and
you’ll get the same value. These results are obvious to you now, but probably aren’t
obvious to someone who has just been given the definition of the gradient. We are
in a similar situation now with the derivative: we’ve seen the definition and we can
calculate derivatives for a variety of different functions, but we haven’t yet discussed
what information the derivative provides.

3.1 Derivatives and Tangent Lines

Part of what makes the derivative so useful is the relationship between tangent lines
and the derivative. A line that is tangent to a curve (in other words, a tangent line) is
one that, roughly speaking, just touches the curve at a single point.3

The important connection between tangent lines and derivatives is expressed be-
low.

Definition (Derivatives and Tangent Lines). Given a differentiable function f and a
value a in the domain of f , the gradient of the line tangent to the graph of y = f (x),
passing through the point (a,f (a)), is equal to f ′(a).

3This description of a tangent line is not entirely accurate, as you’ll see when working through the
questions at the end of this section.
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In other words, derivatives give gradients of tangent lines.4

This connection between derivatives and tangent lines can be illustrated by consid-
ering the function f (x) = x2. If we graph y = f (x), we get a parabola. Since f ′(x) = 2x,
we can easily calculate that f ′(1) = 2, f ′(2) = 4, and f ′(−1) = −2. What do these val-
ues tell us? Well, the points with coordinates (1,1) (with x-coordinate 1), (2,4) (with
x-coordinate 2), and (−1,1) (with x-coordinate −1), all lie on the parabola, and for
each point there is a a line tangent to the parabola that passes through that point.
Calculating the derivatives tells us that

• the tangent line passing through (1,1) has gradient 2, since f ′(1) = 2,

• the tangent line passing through (2,4) has gradient 4, since f ′(2) = 4, and

• the tangent line passing through (−1,1) has gradient −2, since f ′(−1) = −2.

Notice that the calculation of the gradient of the tangent line only involves the x-
coordinate of the relevant point on the curve: we can determine, for example, that the
tangent line to the curve y = x2 that passes through the point with x-coordinate 2.5 is
5, without having to calculate the y-coordinate of the point on the curve.

With a bit more work, we can also find the equations of the tangent lines (and here
we do need to find the y-coordinates of the points on the curve). If we are trying to find
the equations of each line in the form y = mx + c, then we can use the gradient (the
value of m) and the given point on the parabola to determine the value of c in each
case. For example, the equation of the tangent to the curve y = x2 passing through
(1,1) is y = 2x − 1.

3.1.1 Questions

1. Find the equation of the tangent line to the curve given by y = x2 at the point on
the curve with x-coordinate 2.5.

2. Consider the function f (x) = x3 − 2x2 − x+ 2.

(a) Find the equation of the tangent line at the point on the curve y = f (x) with
x = 0.

(b) Plot the graph of both the original function f and the tangent line from part
(a) on the same set of axes.

(c) Does the tangent line found in part (a) intersect the original curve at only
one point?

4Note that this ‘result’ does not simply note a connection between tangent lines and derivatives, it
actually gives the precise definition of a tangent line: the tangent line to the curve defined by y = f (x)
at a point (a,f (a)) is the the line passing through that point with gradient f ′(a). Thus, the gradient of
the tangent line is defined to be equal to the value of the derivative. This allows us to avoid issues with
the ‘touches the curve at only one point’ description of the tangent line—see question 2c in 3.1.1.
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3.2 Derivatives and Rates of Change

Calculus is sometimes described as the study of rates of change, and the derivative at
a point can also be interpreted as an instantaneous rate of change. To understand what
that means, consider the following example.

A car has been driving for 30 minutes, and has covered a distance of 40 km. If
you were asked to calculate the average speed of the car for this half-hour journey, you
would calculate

40 km
0.5 h

= 80 km/h

Of course, over the 30 minute journey you might expect that the car was occasionally
travelling faster than, and occasionally travelling slower than, 80 km/h. However,
as far as the average speed is concerned, the calculation above is correct: you divide
the total distance travelled by the total time taken to get the average speed over that
interval—it doesn’t matter whether the speed of the car was constant or not.

Let’s now consider a similar scenario. Let’s assume that the car is travelling at a
constant speed of 80 km/h down a long, straight track. Along the track we’ve placed
a marker, and we will start a stopwatch when the car passes that marker and then
monitor the distance travelled as the car continues along the track. We could then
plot a distance-time graph for this situation, as shown in Figure 1. Now consider: how
could the speed of the car be determined from this graph? Given that speed is the rate
of change of distance with respect to time, you should recognise that the speed of the car
would be represented by the gradient of the line, and so calculating the gradient of the
line in the distance-time graph would reveal the speed of the car.

Figure 1: Distance-Time Graph for a Car Travelling at Constant Speed
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3.2.1 Accelerated Motion

If cars always travelled at a constant speed we would be able to end our discussion
here, but out in the ‘real world’ cars are constantly changing speed. A car that starts
from rest has an initial speed of 0 km/h, but several seconds later that car could very
well be travelling at a speed of 80 km/h. If the car is changing speed—if it is acceler-
ating or decelerating—then the distance-time graph will not be a straight line, and so
we will not be able to determine the speed of the car by finding a gradient as above.

Consider, then, a more realistic scenario, in which a car starts from rest and accel-
erates to 80 km/h in 10 seconds, with a distance time graph as shown in Figure 2.

Figure 2: Distance-Time Graph for an Accelerating Car

Here, the function that gives the distance travelled by the car after x seconds is

f (x) =
(10

9

)
x2

Using this function, we can easily verify that the point (6,40) lies on the curve. What
was the car’s average speed over the first 6 seconds? This is easily shown to be 24 km/h
(since the car has travelled 40 m in 6 seconds), and corresponds to the gradient of the
line shown in Figure 3.

Similarly, you can calculate that the car’s average speed over the next 6 seconds is
72 km/h, which corresponds to the gradient of the line shown in Figure 4.

What none of these calculations provides, though, is the actual speed of the car
at exactly 6 seconds—if you were to look at the car’s speedometer 6 seconds after it
started to move, what would you see? You might expect that it would be indicate a
speed greater than 24 km/h, but less than 72 km/h. Given what we know about the
distance-time graph for the car, is there some way we can calculate its actual speed at
exactly 6 seconds?

Knowing what you now know about the derivative, you may suspect that it can be
used to answer the question above. Since f ′(x) =

(
20
9

)
x, we have f ′(6) = 40

3 . As you
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Figure 3: The average speed of the car in the first 6 seconds.

Figure 4: The average speed of the car in the next 6 seconds.

know, this value corresponds to the gradient of the tangent line passing through the
point (6,40), as shown in Figure 5.

The gradient of the tangent line reflects the units of measurement used in the
graph, and so the gradient of the tangent line is a value whose units are metres per
second. Converting to km/h, we get that the gradient is equivalent to 48 km/h. If you
were to look at the car’s speedometer exactly 6 seconds after it began to accelerate,
you would see that it was travelling at exactly 48 km/h. A moment later it would be
travelling at a speed faster than 48 km/h, and a moment earlier it would have been
travelling at a speed less than 48 km/h. Thus, since the car is accelerating, its speed is
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Figure 5: The speed of the car at 6 seconds.

exactly 48 km/h for only an instant, and it is in this sense that the derivative gives us
an instantaneous rate of change.

3.2.2 Questions

All questions below concern the accelerating car from Section 3.2.1.

1. (a) Show that the car is travelling at 80 km/h 10 seconds after it begins to move.

(b) Calculate the average speed of the car over the first 10 seconds.

(c) Find the time at which the car is travelling at exactly the speed you calcu-
lated in question 1b.

2. (a) Find the derivative of the function

f ′(x) =
(20

9

)
x

This new function is a called second derivative.

(b) Explain why the units of the second derivative are ms−2. What is the accel-
eration of the car?

4 Derivatives and Curve Sketching

It is sometimes the case in applications of calculus that we know more about the
derivative of a function than we do about the original function. It is useful, then, to
consider exactly what we can discover about a potentially unknown original function
through the study of its derivative.
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Here, we’ll first start with the reverse situation, beginning with a known function
and exploring the features of its derivative. Once we’ve identified how the features of
the original function affect the features of its derivative, we’ll study the derivative of a
second, unknown function, to see what we can determine about the original function.

Again, a function may fail to have a derivative at some (or all) points in its domain,
but we’ll assume that all functions we consider have domain R, and have a derivative
defined for all values in R (unless explicitly indicated otherwise).

4.1 Intervals of Increase and Decrease

Assume that f is a function defined on the interval [a,b] for a,b ∈ R, f is said to be
strictly increasing on the interval [a,b] provided, for any x,y ∈ [a,b]

if x < y then f (x) < f (y)

In other words, a function is strictly increasing over an interval if the greater the input,
the greater the output.

Similarly, if f is a function defined on the interval [a,b] for a,b ∈ R, f is said to be
strictly decreasing on the interval [a,b] provided, for any x,y ∈ [a,b]

if x < y then f (y) < f (x)

For example, the function f (x) = x2 with domain R is increasing on [1,4] and de-
creasing on ]−20,−3[ (though the definitions involve closed intervals, that condition is
not essential). Of course, it would be more informative to say the function is increas-
ing on [0,∞[ and decreasing on ]−∞,0], as those are the largest intervals over which
the two conditions are satisfied.5

Sometimes a weaker condition than strict increase/decrease is all that’s required,
which leads to the definitions below.

If f is a function defined on the interval [a,b] for a,b ∈ R, f is said to be non-
decreasing on the interval [a,b] provided, for any x,y ∈ [a,b]

if x < y then f (x) ≤ f (y)

In other words, a function is non-decreasing on an interval if it is either increasing or
‘holding steady’ as the input values increase.

Similarly, if f is a function defined on the interval [a,b] for a,b ∈ R, f is said to be
non-increasing on the interval [a,b] provided, for any x,y ∈ [a,b]

if x < y then f (y) ≤ f (x)

Unfortunately there are some alternative terminologies in use for these notions:
sometimes what we have here called strictly increasing/decreasing is instead called
increasing/decreasing, in which case ‘non-decreasing’ may be called monotonically in-
creasing (and ‘non-increasing’ may be called monotonically decreasing). Even worse,
sometimes a mixture of terminology is used. Consequently, speaking of an increasing

5Notice that 0 can be included in both intervals—think about why this is the case.
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function, for example, could be ambiguous—do you mean strictly increasing, or mono-
tonically increasing? The advantage of the terminology were are using here is that our
terminology is unambiguous.

So, what does all of this have to do with derivatives? Consider the graph of the
function f (x) = x3 − x2 − x, with domain R, along with the tangent lines at the three
zeros of this function, as shown in Figure 6.

Figure 6: The graph of f (x) = x3 − x2 − x, with tangents at the zeros.

Notice that both A and C are located in intervals in which f is increasing, and B is
located in an interval in which f is decreasing. How is this reflected in the gradients
of the various tangent lines? In other words, how is this reflected in the value of the
derivative at each point?

As you may now have realised, the sign of the derivative at a point helps to indicate
where the function is increasing or decreasing.

• A point at which the derivative is positive has a tangent line with positive gradi-
ent, and so will lie in an interval in which the function is increasing.

• A point at which the derivative is negative will have a tangent line with negative
gradient, and so will lie in an interval in which the function is decreasing.

Thus, the sign of the derivative helps to identify the intervals of increase/decrease: if f ′

is positive over some interval, then f is increasing over that interval, if f ′ is negative
over some interval, then f is decreasing over that interval.

4.2 Stationary Points: Extrema

As you consider the values of the derivative of the function f (x) = x3 − x2 − x, you will
recognise that there is a third option for the derivative: it is positive at certain values,
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negative at others, but it is also 0 at two points, as shown in Figure 7. This leads to the
following definition.

Definition (Stationary Points). Given a differentiable function f and a value a in the
domain of f , a is a stationary point of f if f ′(a) = 0.

As we know that the value of f ′(a) gives the gradient of the tangent line to the
graph of y = f (x) at the point with x-coordinate a, stationary points of a function f
indicate where the tangent line is horizontal.

Figure 7: The graph of f (x) = x3 − x2 − x, with tangents of gradient zero shown.

The point E occurs at what is called a local minimum of the function f . It is a
local minimum because −1 is not a minimum value of f (notice that f has no global
minimum value on R), but −1 is a minimum of the function in some intervals centred
at 1, for example, in the interval [0,2]. Similarly, f has a local maximum at D, though f
has no (global) maximum value on its domain. Maxima and minima (whether local or
global) are collectively called extrema (singular: extremum), although they may also be
called turning points. Thus, for example, points D and E are turning points of f . This
example should serve to suggest the following (correct) general principle: the extrema
of a differentiable function with domain R occur at stationary points.6

We are now in a position to be able to easily calculate the (exact) coordinates of D.
To do so, we’ll (finally!) consider f ′ and its graph, as shown in Figure 8.

A quick derivation confirms that f ′(x) = 3x2 − 2x − 1, and this quadratic can be
factored to give

f ′(x) = (3x+ 1)(x − 1)

6We need to be a bit careful in applying this result, since functions with domains restricted to an
interval may have extrema at the endpoints of that interval. For example, the function f (x) = x2 with
domain R has a (global) minimum at x = 0 and no global maximum, but the function f (x) = x2 with
domain [1,4] has a global minimum at x = 1 and a global maximum at x = 4.
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Figure 8: The graph of f ′(x) = 3x2 − 2x − 1.

Thus, we see that f ′ has two zeros, and so f has two stationary points: one at x = −1
3

and one at x = 1. From the graph of f (see Figure 7) we know that E has x-coordinate
1, and so x = −1

3 gives the x-coordinate of D. Finally,

f
(
−1

3

)
=
(
−1

3

)3
−
(
−1

3

)2
−
(
−1

3

)
=

5
27

So, the coordinates of D are
(
−1

3 ,
5

27

)
.

Putting all these pieces together, we can now identify a number of the features of
f reflected in the graph of f ′ (Figure 8). First, we can see that f has two stationary
points, since f ′ has two zeros. We already knew that the leftmost stationary point, at
x = −1

3 , was a local maximum, but we could also have determined this from the graph
of f ′. Since f ′ is positive to the left of x = −1

3 , we know that f is increasing to the left of
x = −1

3 . Since f ′ is negative to the right of x = −1
3 , we know that f is decreasing to the

right of x = −1
3 . Thus, f is increasing to the left of x = −1

3 , stationary at x = −1
3 , and

decreasing to the right of x = −1
3 , so the point with x = −1

3 on the graph of f must be
a maximum. Similarly, we see from the graph of f ′ that f is decreasing to the left of
x = 1, stationary at x = 1, and increasing to the right of x = 1, so the point with x = 1
on the graph of f must be a minimum.

The reasoning used here to identify minima and maxima can be applied in other
situations to determine whether or not a stationary point is a maximum or a minimum.
As shown in Figure 9, a stationary point that is a minimum will have a derivative that
is negative immediately to the left of that point, and positive immediately to the right.
Similarly, a stationary point that is a maximum will have a derivative that is positive
immediately to the left of that point, and negative immediately to the right.
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Figure 9: Tangents, Derivatives, and Extrema

Let’s quickly look at a second example before we apply the methods we’ve just
developed in a more complicated scenario. Consider the function f (x) = x2 + 2x. Its
derivative is f ′(x) = 2x + 2, and so we can see immediately that f ′ has a zero, and so f
has a stationary point, at x = −1.

Figure 10: The graph of f ′(x) = 2x+ 2.

It is also clear that this stationary point is a minimum, since f ′ is negative to the left
of the stationary point and positive to the right (which indicates that f is decreasing
to the left of the stationary point, then increasing to the right).

Of course, you know quite a bit about quadratic functions, and so you were already
able to recognise that f would be concave up, and so have a (global) minimum value.
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4.2.1 Example

Let’s now consider our final example. The unknown function f has derivative f ′, as
shown in Figure 11.

Figure 11: The graph of y = f ′(x).

What characteristics of f can we determine from the graph of f ′? Well, clearly f
has three stationary points, at x = −1, x = 0, and x = 2. It is also apparent that the
stationary points at x = −1 and x = 2 are minima, and the stationary point at x = 0 is a
maximum.

Given this information, there are a number of possible curves that will satisfy the
given constraints, and so we can’t expect our curve to match the original curve exactly
(though it should have roughly the same shape). I suggest you complete your sketch
of a possible graph of the original function f , then compare your sketch to that shown
in Figure 13 on page 16.

4.3 Questions

1. Consider a quadratic function f (x) = ax2 + bx + c, for some constants a,b,c ∈ R,
with a , 0.

(a) Find an expression for f ′(x).

(b) Find an expression for the x-coordinate of the stationary point of f .
Hence, explain why the equation of the axis of symmetry for the graph of a
quadratic function is x = − b

2a .

(c) Use the derivative to explain how the sign of a determines whether the
quadratic function f has a (global) minimum or a (global) maximum.
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Figure 12: The graph of y = f ′(x).

2. Consider the graph of y = f ′(x), for a differentiable function f with domain R,
shown in Figure 12.

(a) Identify the intervals of increase and decrease of f .

(b) Sketch one possible graph of the original function f .

Figure 13: One possible graph of y = f (x) from the example in Section 4.2.1.
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5 Second Derivatives

5.1 Concavity

You now know that, for a given differentiable function f with domain R, you could
identify the intervals of increase and decrease from the graph of f ′: f will be increas-
ing over intervals in which f ′ is positive, and decreasing over intervals when f ′ is
negative. Of course, f ′ itself is a function, and so we could also study its intervals of
increase or decrease. What do the intervals of increase or decrease for f ′ reveal about
the original function f ?

Figure 14: The graph of y = f (x).

Consider the function f shown in Figure 14, with tangent lines indicated at A,B,
and C. Consider the gradients of those tangent lines—as we move further to the right,
the gradients increase, and so f ′ is an increasing function. Graphs of functions that
bend upwards are said to be concave up, and so a function whose graph is concave up
will have a derivative that is increasing.

Notice that f in Figure 14 is an increasing function, and its derivative is increasing
(so f is an increasing function that is concave up). Is it possible for a decreasing func-
tion to be concave up? In other words, can a decreasing function have an increasing
derivative? This question can be answered by considering the function g shown in
Figure 15. While the function g is decreasing (and so its derivative is negative), the

Figure 15: The graph of y = g(x).
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derivative of g is increasing. Thus, g is a decreasing function that is concave up.
A function whose derivative is decreasing is said to be concave down, and (as with

functions that are concave up), a function that is concave down can either be increas-
ing or decreasing. You should draw a quick sketch of a function that is increasing and
concave down, and another of a function that is decreasing and concave down.

Let’s consider the concavity of f (x) = x2 with domain R. Without further calcu-
lation, you should recognise that f is concave up over its entire domain.7 Taking the
derivative of f gives us f ′(x) = 2x, which is clearly an increasing function. Thus, con-
sideration of f ′ confirms that f is concave up, as expected. Notice, though, that we
have another way to establish that f ′ is increasing—from Section 4.1, we know that a
function is increasing when its derivative is positive, and so we can find the derivative
of f ′ to check for intervals of increase or decrease. Thus, we want to find the second
derivative8 of f , which is symbolised in Lagrange notation as f ′′. The calculation here
is simple, given f ′(x) = 2x, we get

f ′′(x) = 2

Thus f ′′ is positive for all values in R, and so f ′ is increasing throughout its domain,
and thus f is concave up over R.

Let’s now consider another simple example, with f (x) = −2x2 + 3x − 4 and domain
R. Here we get f ′(x) = −4x+3, and so f ′′(x) = −4. Clearly f ′′ is negative throughout its
domain, and so f ′ is decreasing, which tells us that f is concave down over its entire
domain.

5.1.1 Questions

1. Consider the function f (x) =
√
x with domain [0,∞[. Find the second derivative

of f . Hence, show that f is concave down on its domain.

2. Show that f (x) = 1
x , with domain R, is concave down on ]0,∞[ and concave up

on ]−∞,0[.

5.2 Points of Inflexion

Quadratic functions with domain have rather unexciting behaviour when it comes to
concavity: they’re either concave down or concave up throughout their domain. It’s
not until we get to degree three polynomial functions that we our first examples of
functions that change concavity over their domain, and a point of inflexion is the name
given to a point at which a function changes concavity.

Let’s study the function f (x) = x3 − x2 − x (which you will recall had also been
considered in Section 4.2). Quick calculations yield that f ′(x) = 3x2−2x−1 and f ′′(x) =
6x − 2. The graphs of all three functions are shown in Figure 16.

It is clear that f ′′ has a zero at x = 1
3 , is negative on the interval ]−∞, 1

3 [, and is pos-
itive on the interval ]1

3 ,∞[. Thus, consideration of f ′′ confirms that f ′ is decreasing on
]−∞, 1

3 [ and increasing on ]1
3 ,∞[. This indicates that f is concave down on ]−∞, 1

3 [ and

7Just as a single function can be increasing in some intervals and decreasing on others, a function
can also have intervals of different concavity.

8Recall question 2a in Section 3.2.2.
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Figure 16: The graph of f (x) = x3 − x2 − x, along with its first and second derivatives.

concave up on ]1
3 ,∞[. Thus we see that f changes concavity at x = 1

3 , and so f has a point
of inflexion. Substituting 1

3 into the expression for f establishes that the coordinates
of the point of inflexion are

(
1
3 ,−

11
27

)
, and this point is indicated in Figure 17.

Figure 17: The graph of f (x) = x3 − x2 − x, showing its point of inflexion.

These considerations leads us to the following definition.

Definition (Point of Inflexion). Given a twice-differentiable9 function f and a point
a in the domain of f , a is a point of inflexion of f provided f ′′(a) = 0 and f ′′ changes
sign at a.

It is important to note that, given a twice-differentiable function f , knowing that
f ′′(a) = 0 is not sufficient to guarantee that a is a point of inflexion—we need to be

9In other words, both the first and second derivatives of f exist.
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certain that f ′′ changes signs at a as well. To see why, consider the function f (x) = x4,
with second derivative f ′′(x) = 12x2. Clearly f ′′(0) = 0, but (0,0) is not a point of
inflexion. The function f ′′ does not change signs at 0, and f is concave up on all of R.

5.2.1 Questions

1. Find the point of inflexion of the function f (x) = −x3 + 4x2 −7x+ 2, and so deter-
mine the intervals over which the function is concave up/concave down.

5.2.2 Stationary Points Revisited

Our consideration of f (x) = x4 showed us that zeros of f ′′ don’t necessarily yield points
of inflexion—we need to be certain that f ′′ actually changes sign at the point in ques-
tion as well. This raises an interesting question: do we need to worry about something
similar happening when we use the zeros of the first derivative (i.e., the stationary
points) to find extrema? We’ve seen that minima and maxima of differentiable func-
tions with domain R occur at stationary points, but is it possible to have a stationary
point that is not an extremum? Interestingly, the answer is yes.

Consider the function f (x) = x3. As f ′(x) = x2, we immediately get that f ′(0) = 0,
and so 0 is a stationary point of f . However, (as the graph will confirm), (0,0) is neither
a maximum nor a minimum of f . What is happening at the point (0,0)? You should
now be able to recognise that (0,0) is a point of inflexion, which gives us our third (and
final) option: given a twice-differential function f , if a is a stationary point of f then

• (a,f (a)) is a maximum, or

• (a,f (a)) is a minimum, or

• (a,f (a)) is a point of inflexion.

This (now completed) list will be explored further in your assignment as you develop
the Second Derivative Test.

5.2.3 Questions

1. Consider the function f (x) = x3. Plot the graph of f ′, and with reference to your
graph, explain how you can tell that (0,0) is not an extremum of f .

[Hint: If 0 were, for example, a maximum of f , then f ′ would positive just to the
right of 0 and negative just to the left. What do you actually observe on either
side of x = 0 in the graph of f ′?]
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