

## IB Mathematics HL 12 Polynomials Super Challenge

- 1. Consider a polynomial equation of the form  $ax^2 + bx + c = 0$ .
  - (a) Complete the square to express the left side in vertex form.
  - (b) Rearrange your equation from part (a) to isolate *x*. Name the formula you've just derived.
- 2. Let  $\mathbb{R}[x]$  represent the set of polynomials with real coefficients, and  $\mathbb{C}[x]$  represent the set of polynomials with complex coefficients.<sup>1</sup>

A polynomial  $p(x) \in \mathbb{R}[x]$  is said to be *irreducible* in  $\mathbb{R}[x]$  if it cannot be written as a product of non-constant polynomials of lesser degree. So,  $x^2 - 5$  is reducible, as it is equal to  $(x - \sqrt{5})(x + \sqrt{5})$ , but 254, 5x - 7, and  $x^2 + 1$  (of degrees 0, 1, and 2, respectively) are all irreducible in  $\mathbb{R}[x]$ .

If we consider instead  $\mathbb{C}[x]$ , the only irreducible polynomials are of degree < 2 (this is a consequence of the Factor Theorem and the Fundamental Theorem of Algebra). Here, for example,  $x^2 + 1$  *does* factor as (x - i)(x + i).

(a) Show that, for any complex number z = a + bi,

$$(x-z)(x-z^*)$$

is an element of  $\mathbb{R}[x]$ .

Note that, for any two elements p(x) and q(x) of  $\mathbb{R}[x]$ , the product p(x)q(x) is also an element of  $\mathbb{R}[x]$ .

(b) Using your results from part (a), explain why there are no irreducible polynomials of degree > 2 in  $\mathbb{R}[x]$ .

<sup>&</sup>lt;sup>1</sup>Note that  $\mathbb{R}[x] \subset \mathbb{C}[x]$ .