
IB Mathematics HL 13
Complex Numbers: Question 14 Notes

14. b) The complex number z is defined by z = cosθ + isinθ.

ii) Deduce that zn + z−n = 2cosnθ.

Note that the expression on the left is the sum of a complex number
and its conjugate, hence the result is a real number. Since it’s a real
number, the argument of zn + z−n will either be 0 (if zn + z−n is positive)
or π (if zn + z−n is negative). In general, then, the argument of the real
number 2cosnθ is not nθ.

c) i) Find the binomial expansion of
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= z5 + 5z4z−1 + 10z3z−2 + 10z2z−3 + 5zz−4 + z−5
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ii) Hence, show that cos5θ = 1

16 (acos5θ + bcos3θ + ccosθ), where a,b, and c
are positive integers to be found.

From b) ii) we get that z+ z−1 = 2cosθ, and so(
z+ z−1

)5
= (2cosθ)5

= 32cos5θ (1)

From c) i), we get another way to expand
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using b) ii) again gives

= 2cos5θ + 5(2cos3θ) + 10(2cosθ)
= 2cos5θ + 10cos3θ + 20cosθ (2)

Finally, combining (1) and (2) gives

32cos5θ = 2cos5θ + 10cos3θ + 20cosθ

cos5θ =
1

16
(cos5θ + 5cos3θ + 10cosθ)

So, a = 1,b = 5, and c = 10.
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