IB Mathematics HL 13 Complex Numbers: Question 14 Notes

14. b) The complex number z is defined by $z=\cos \theta+\mathrm{i} \sin \theta$.
ii) Deduce that $z^{n}+z^{-n}=2 \cos n \theta$.

Note that the expression on the left is the sum of a complex number and its conjugate, hence the result is a real number. Since it's a real number, the argument of $z^{n}+z^{-n}$ will either be 0 (if $z^{n}+z^{-n}$ is positive) or π (if $z^{n}+z^{-n}$ is negative). In general, then, the argument of the real number $2 \cos n \theta$ is not $n \theta$.
c) i) Find the binomial expansion of $\left(z+z^{-1}\right)^{5}$.

$$
\begin{aligned}
\left(z+z^{-1}\right)^{5} & =z^{5}+\binom{5}{1} z^{4}\left(z^{-1}\right)^{1}+\binom{5}{2} z^{3}\left(z^{-1}\right)^{2}+\binom{5}{3} z^{2}\left(z^{-1}\right)^{3}+\binom{5}{4} z\left(z^{-1}\right)^{4}+\left(z^{-1}\right)^{5} \\
& =z^{5}+5 z^{4} z^{-1}+10 z^{3} z^{-2}+10 z^{2} z^{-3}+5 z z^{-4}+z^{-5} \\
& =z^{5}+5 z^{3}+10 z+10 z^{-1}+5 z^{-3}+z^{-5} \\
& =\left(z^{5}+z^{-5}\right)+5\left(z^{3}+z^{-3}\right)+10\left(z+z^{-1}\right)
\end{aligned}
$$

ii) Hence, show that $\cos ^{5} \theta=\frac{1}{16}(a \cos 5 \theta+b \cos 3 \theta+c \cos \theta)$, where a, b, and c are positive integers to be found.

From b) ii) we get that $z+z^{-1}=2 \cos \theta$, and so

$$
\begin{align*}
\left(z+z^{-1}\right)^{5} & =(2 \cos \theta)^{5} \\
& =32 \cos ^{5} \theta \tag{1}
\end{align*}
$$

From c) i), we get another way to expand $\left(z+z^{-1}\right)^{5}$,

$$
\begin{align*}
\left(z+z^{-1}\right)^{5} & =\left(z^{5}+z^{-5}\right)+5\left(z^{3}+z^{-3}\right)+10\left(z+z^{-1}\right) \quad \text { using b) ii) again gives } \\
& =2 \cos 5 \theta+5(2 \cos 3 \theta)+10(2 \cos \theta) \\
& =2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta \tag{2}
\end{align*}
$$

Finally, combining (1) and (2) gives

$$
\begin{aligned}
32 \cos ^{5} \theta & =2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta \\
\cos ^{5} \theta & =\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)
\end{aligned}
$$

So, $a=1, b=5$, and $c=10$.

