IB Mathematics HL 12
 Polynomials Challenge

1. Consider a polynomial equation of the form $a x^{2}+b x+c=0$.
(a) Complete the square to express the left side in vertex form.
(b) Rearrange your equation from part (a) to isolate x. Name the formula you've just derived.
2. Let $\mathbb{R}[x]$ represent the set of polynomials with real coefficients, and $\mathbb{C}[x]$ represent the set of polynomials with complex coefficients. ${ }^{1}$

A polynomial $p(x) \in \mathbb{R}[x]$ is said to be irreducible in $\mathbb{R}[x]$ if it cannot be written as a product of non-constant polynomials of lesser degree. So, $x^{2}-5$ is reducible, as it is equal to $(x-\sqrt{5})(x+\sqrt{5})$, but $254,5 x-7$, and $x^{2}+1$ (of degrees 0,1 , and 2 , respectively) are all irreducible in $\mathbb{R}[x]$.

If we consider instead $\mathbb{C}[x]$, the only irreducible polynomials are of degree <2 (this is a consequence of the Factor Theorem and the Fundamental Theorem of Algebra). Here, for example, $x^{2}+1$ does factor as $(x-\mathrm{i})(x+\mathrm{i})$.
(a) Show that, for any complex number $z=a+b i$,

$$
(x-z)\left(x-z^{*}\right)
$$

is an element of $\mathbb{R}[x]$.
Note that, for any two elements $p(x)$ and $q(x)$ of $\mathbb{R}[x]$, the product $p(x) q(x)$ is also an element of $\mathbb{R}[x]$.
(b) Using your results from part (a), explain why there are no irreducible polynomials of degree >2 in $\mathbb{R}[x]$.

[^0]
[^0]: ${ }^{1}$ Note that $\mathbb{R}[x] \subset \mathbb{C}[x]$.

