Unit 11 - Intro to Calculus Review (Ch14\&15)

$$
\text { Let } f(x)=4 x-\mathrm{e}^{x-2}-3 \text {, for } 0 \leq x \leq 5 \text {. }
$$

1a. Find the x-intercepts of the graph of f.

1b. Write down the gradient of the graph of f at $x=3$.
\qquad

Part of the graph of $f(x)=a x^{3}-6 x^{2}$ is shown below.

The point P lies on the graph of f. At $\mathrm{P}, x=1$.

2a. Find $f^{\prime}(x)$
\qquad

2b.
\qquad

$$
\text { Let } f(x)=\mathrm{e}^{6 x}
$$

(i) Show that $m=6$.
(ii) Find b.

3c.
Hence, write down the equation of this tangent.
\qquad

Consider $f(x)=x^{2} \sin x$.

\qquad

$$
\text { Let } f(x)=\frac{2 x}{x^{2}+5}
$$

5. Use the quotient rule to show that $f^{\prime}(x)=\frac{10-2 x^{2}}{\left(x^{2}+5\right)^{2}}$.
\qquad

$$
\text { Let } f(x)=\sqrt[3]{x^{4}}-\frac{1}{2} \text {. }
$$

7. Find $f^{\prime}(x)$.
\qquad
8. Let $h(x)=\frac{6 x}{\cos x}$. Find $h^{\prime}(0)$.
\qquad

Let $g(x)=2 x \sin x$.

9a. Find $g^{\prime}(x)$
\qquad

Let $f(x)=\frac{\cos x}{\sin x}$, for $\sin x \neq 0$.
10a. Use the quotient rule to show that $f^{\prime}(x)=\frac{-1}{\sin ^{2} x}$.
\qquad

Let $f(x)=x \cos x$, for $0 \leq x \leq 6$.
11. Find $f^{\prime}(x)$

Let $f(x)=\cos 2 x$ and $g(x)=\ln (3 x-5)$.

12a. Find $f^{\prime}(x)$.
\qquad
13. Consider the curve with equation $f(x)=p x^{2}+q x$, where p and q are constants. The point $\mathrm{A}(1,3)$ lies on the curve. The tangent to the curve at A has gradient 8 . Find the value of p and of q.
\qquad

Let $f(x)=x^{3}-4 x+1$.

15a. Expand $(x+h)^{3}$.
[2 marks]

15b. Use the formula $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to show that the derivative of $f(x)$ is $3 x^{2}-4$.
[4 marks]
\qquad

A function f has its first derivative given by $f^{\prime}(x)=(x-3)^{3}$.
\qquad
(3) and $f^{\prime \prime}(3)$

