- 1. Show that, if ω is an n^{th} root of unity, then so is ω^{-1} . - 2. Show that, if ω is an n^{th} root of unity, then so is ω^k for any $k \in \mathbb{N}$. An n^{th} root of unity is called *primitive* if it is not an m^{th} root of unity for any $m \in \mathbb{Z}^+$ with $1 \le m < n$. - 3. Prove that, if ω is a primitive n^{th} root of unity, then $\omega^0, \omega^1, \ldots, \omega^{n-1}$ are all distinct. - 4. Show that, if ω is a primitive 5th root of unity, then $$\omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0$$ Dr. McDonald Roots of Unity