$$
\text { Let } \vec{a}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad \vec{b}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] \quad \vec{c}=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right] \quad \vec{d}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

1. Find the angle between \vec{a} and \vec{b}.
2. Find the angle between L_{1} and L_{2}, where $L_{1}: \vec{r}=\vec{c}+\lambda \vec{a}$ and $L_{2}: \vec{r}=\vec{d}+\lambda \vec{b}$.
3. Let Π_{1} be the plane defined by the Cartesian equation $x-3 y+z=2$. Find the angle between L_{1} and Π_{1}.
4. Let Π_{2} be the plane defined by the Cartesian equation $2 x+y-z=0$. Find the angle between Π_{1} and Π_{2}.
