1. Show that, if ω is an $n^{\text {th }}$ root of unity, then so is ω^{-1}.
2. Show that, if ω is an $n^{\text {th }}$ root of unity, then so is ω^{k} for any $k \in \mathbb{N}$.
An $n^{\text {th }}$ root of unity is called primitive if it is not an $m^{\text {th }}$ root of unity for any $m \in \mathbb{Z}^{+}$with $1 \leq m<n$.
3. Prove that, if ω is a primitive $n^{\text {th }}$ root of unity, then $\omega^{0}, \omega^{1}, \ldots, \omega^{n-1}$ are all distinct.
4. Show that, if ω is a primitive $5^{\text {th }}$ root of unity, then

$$
\omega^{4}+\omega^{3}+\omega^{2}+\omega+1=0
$$

