Binomial Theorem Practice [52 marks]

1. In the expansion of $a x^{3}(2+a x)^{11}$, the coefficient of the term in x^{5} is 11880 . Find the [6 marks] value of a.
2. In the expansion of $(3 x+1)^{n}$, the coefficient of the term in x^{2} is $135 n$, where
[7 marks] $n \in \mathbb{Z}^{+}$. Find n.

Consider the expansion of $(2 x+3)^{8}$.

3a. Write down the number of terms in this expansion.
[1 mark]

3b. Find the term in x^{3}.
[4 marks]
4. The third term in the expansion of $(x+k)^{8}$ is $63 x^{6}$. Find the possible values of k. [5 marks]

In the expansion of
$(3 x-2)^{12}$, the term in
x^{5} can be expressed as
$\binom{12}{r} \times(3 x)^{p} \times(-2)^{q}$.

5a. (a) Write down the value of p, of q and of r.
[5 marks]
(b) Find the coefficient of the term in x^{5}.

5b. Write down the value of p, of q and of r.

5c. Find the coefficient of the term in x^{5}.
[2 marks]
6. The constant term in the expansion of $\left(\frac{x}{a}+\frac{a^{2}}{x}\right)^{6}$, where $a \in \mathbb{R}$ is 1280 . Find a.
[7 marks]

Consider the expansion of $\left(3 x^{2}+2\right)^{9}$.

7a. Write down the number of terms in the expansion.

7 b. Find the term in x^{4}.

The fifth term in the expansion of the binomial
$(a+b)^{n}$ is given by
$\binom{10}{4} p^{6}(2 q)^{4}$.

8a. Write down the value of n.

8b. Write down a and b, in terms of p and/or q.

8c. Write down an expression for the sixth term in the expansion.
[3 marks]

Printed for Mulgrave School

