Consider the three lines defined below.
\[L_1: \vec{r}=\begin{bmatrix}1\\2\\3\end{bmatrix}+\lambda \begin{bmatrix}1\\-3\\-4\end{bmatrix}\]
\[L_2: \vec{r}=\begin{bmatrix}-2\\-3\\0\end{bmatrix}+\lambda \begin{bmatrix}4\\4\\0\end{bmatrix}\]
\[L_3: \vec{r}=\begin{bmatrix}2\\-5\\-3\end{bmatrix}+\lambda \begin{bmatrix}0\\2\\1\end{bmatrix}\]
Show that \(L_1\) and \(L_2\) are skew lines, then find the point of intersection of \(L_1\) and \(L_3\).